A bootstrap-assisted spectral test of white noise under unknown dependence

نویسنده

  • Xiaofeng Shao
چکیده

To test for the white noise null hypothesis, we study the Cramér–von Mises test statistic that is based on the sample spectral distribution function. Since the critical values of the test statistic are difficult to obtain, we propose a blockwise wild bootstrap procedure to approximate its asymptotic null distribution. Using a Hilbert space approach, we establish the weak convergence of the difference between the sample spectral distribution function and the true spectral distribution function, as well as the consistency of bootstrap approximation under mild assumptions. Finite sample results from a simulation study and an empirical data analysis are also reported. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White noise testing and model diagnostic checking for functional time series

This paper is concerned with white noise testing and model diagnostic checking for stationary functional time series. To test for the functional white noise null hypothesis, we propose a Cramér-von Mises type test based on the functional periodogram introduced by Panaretos and Tavakolithe (2013a). Using the Hilbert space approach, we derive the asymptotic distribution of the test statistic unde...

متن کامل

Testing for White Noise under Unknown Dependence and Its Applications to Goodness-of-fit for Time Series Models

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box-Pierce’s test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for the dependent white noise. Due to recent pop...

متن کامل

Testing for White Noise under Unknown Dependence and Its Applications to Diagnostic Checking for Time Series Models

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box–Pierce test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for dependent white noise. Because of recent popul...

متن کامل

Valid Resampling of Higher Order Statistics Using Linear Process Bootstrap and Autoregressive Sieve Bootstrap

Abstract. In this paper we show that the linear process bootstrap (LPB) and the autoregressive sieve bootstrap (AR sieve) fail in general for statistics whose large-sample distribution depends on higher order features of the dependence structure rather than just on autocovariances. We discuss why this is still the case under linearity if it does not come along with causality and invertibility w...

متن کامل

Generalised likelihood ratio tests for spectral density

There are few techniques available for testing whether or not a family of parametric times series models fits a set of data reasonably well without serious restrictions on the forms of alternative models. In this paper, we consider generalised likelihood ratio tests of whether or not the spectral density function of a stationary time series admits certain parametric forms. We propose a bias cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011